Articulo
Asymptotic, non-linear solutions for ambipolar diffusion in one dimension
Fecha
2010Registro en:
15010003
WOS:000283165600032
no scielo
eid=2-s2.0-77958566892
Institución
Resumen
We study the effect of the non-linear process of ambipolar diffusion (joint transport of magnetic flux and charged particles relative to neutral particles) on the long-term behavior of a non-uniform magnetic field in a one-dimensional geometry. Our main focus is the dissipation of magnetic energy inside neutron stars(particularly magnetars), but our results have a wider application, particularly to the interstellar medium and the loss of magnetic flux from collapsing molecular cloud cores. Our system is a weakly ionized plasma in which neutral and charged particles can be converted into each other through nuclear beta decays (or ionization-recombination processes). In the "weak-coupling" limit of infrequent inter-particle interactions, the evolution of the magnetic field is controlled by the beta decay rate and can be described by a non-linear partial integro-differential equation. In the opposite, "strong-coupling" regime, the evolution is controlled by the inter-particle collisions and can be modelled through a non-linear diffusion equation. We show numerically that, in both regimes, ambipolar diffusion tends to spread out the magnetic flux, but, contrary to the normal Ohmic diffusion, it produces sharp magnetic field gradients with associated current sheets around those regions where the magnetic field is weak.