info:eu-repo/semantics/article
Dimensionality reduction for visualization of normal and pathological speech data
Fecha
2009-07Registro en:
Goddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo; Dimensionality reduction for visualization of normal and pathological speech data; Elsevier; Biomedical Signal Processing and Control; 4; 3; 7-2009; 194-201
1746-8094
CONICET Digital
CONICET
Autor
Goddard, J.
Schlotthauer, Gaston
Torres, Maria Eugenia
Rufiner, Hugo Leonardo
Resumen
For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context.