dc.creatorGoddard, J.
dc.creatorSchlotthauer, Gaston
dc.creatorTorres, Maria Eugenia
dc.creatorRufiner, Hugo Leonardo
dc.date.accessioned2020-02-18T19:11:00Z
dc.date.accessioned2022-10-15T13:36:28Z
dc.date.available2020-02-18T19:11:00Z
dc.date.available2022-10-15T13:36:28Z
dc.date.created2020-02-18T19:11:00Z
dc.date.issued2009-07
dc.identifierGoddard, J.; Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo; Dimensionality reduction for visualization of normal and pathological speech data; Elsevier; Biomedical Signal Processing and Control; 4; 3; 7-2009; 194-201
dc.identifier1746-8094
dc.identifierhttp://hdl.handle.net/11336/97938
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4392039
dc.description.abstractFor an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult to understand, even for expert voice therapists and physicians. Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an understanding about its underlying structure. In the present paper, eight dimensionality reduction techniques, both classical and recent, are compared on speech data containing normal and pathological speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to perform the classification process on the transformed data, rather than on the original. These qualitative and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local Fisher discriminant analysis is superior for dimensionality reduction in the actual context.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809409000020
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bspc.2009.01.001
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectDATA VISUALIZATION
dc.subjectDIMENSIONALITY REDUCTION
dc.subjectKERNEL METHODS
dc.subjectPATHOLOGICAL VOICE ANALYSIS
dc.titleDimensionality reduction for visualization of normal and pathological speech data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución