info:eu-repo/semantics/article
k-tuple colorings of the Cartesian product of graphs
Fecha
2017-01Registro en:
Bonomo, Flavia; Koch, Ivo Valerio; Torres, Pablo; Valencia Pabon, Mario; k-tuple colorings of the Cartesian product of graphs; Elsevier Science; Discrete Applied Mathematics; 245; 1-2017; 177-182
0166-218X
CONICET Digital
CONICET
Autor
Bonomo, Flavia
Koch, Ivo Valerio
Torres, Pablo
Valencia Pabon, Mario
Resumen
A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G□H)=max{χ(G),χ(H)}. In this paper, we show that there exist graphs G and H such that χk(G□H)>max{χk(G),χk(H)} for k≥2. Moreover, we also show that there exist graph families such that, for any k≥1, the k-tuple chromatic number of their Cartesian product is equal to the maximum k-tuple chromatic number of its factors.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
ReGraph = bridging relational and graph databases = ReGraph: interligando bancos de dados relacionais e de grafos
Cavoto, Patrícia Raia Nogueira, 1983- -
Combinando P-Graph y S-Graph en la visualización de rutas de evacuación
Khalifah Gamboa, Magdi -
Graph dominance by rook domains for Znp and Zn3 × Zm2 graphs
Piza-Volio, Eduardo