dc.creatorBonomo, Flavia
dc.creatorKoch, Ivo Valerio
dc.creatorTorres, Pablo
dc.creatorValencia Pabon, Mario
dc.date.accessioned2020-02-10T15:20:12Z
dc.date.accessioned2022-10-15T12:26:52Z
dc.date.available2020-02-10T15:20:12Z
dc.date.available2022-10-15T12:26:52Z
dc.date.created2020-02-10T15:20:12Z
dc.date.issued2017-01
dc.identifierBonomo, Flavia; Koch, Ivo Valerio; Torres, Pablo; Valencia Pabon, Mario; k-tuple colorings of the Cartesian product of graphs; Elsevier Science; Discrete Applied Mathematics; 245; 1-2017; 177-182
dc.identifier0166-218X
dc.identifierhttp://hdl.handle.net/11336/97048
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4385900
dc.description.abstractA k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G□H)=max{χ(G),χ(H)}. In this paper, we show that there exist graphs G and H such that χk(G□H)>max{χk(G),χk(H)} for k≥2. Moreover, we also show that there exist graph families such that, for any k≥1, the k-tuple chromatic number of their Cartesian product is equal to the maximum k-tuple chromatic number of its factors.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2017.02.003
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X17300872
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCARTESIAN PRODUCT OF GRAPHS
dc.subjectCAYLEY GRAPHS
dc.subjectHOM-IDEMPOTENT GRAPHS
dc.subjectK-TUPLE COLORINGS
dc.subjectKNESER GRAPHS
dc.titlek-tuple colorings of the Cartesian product of graphs
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución