info:eu-repo/semantics/article
Weak type inequality for a family of singular integral operators related with the Gaussian measure
Fecha
2009-05Registro en:
Forzani, Liliana Maria; Harboure, Eleonor Ofelia; Scotto, Roberto Aníbal; Weak type inequality for a family of singular integral operators related with the Gaussian measure; Springer; Potential Analysis; 31; 2; 5-2009; 103-116
0926-2601
CONICET Digital
CONICET
Autor
Forzani, Liliana Maria
Harboure, Eleonor Ofelia
Scotto, Roberto Aníbal
Resumen
In this paper we study a family of singular integral operators that generalizes the higher order Gaussian Riesz Transforms and find the right weight w to make them continuous from L1(wdγ) into L1,∞(dγ), being dγ(x) = e-x2dx. Some boundedness properties of these operators had already been derived by Urbina (Ann Scuola Norm Sup Pisa Cl Sci 17(4):531-567, 1990) and Pérez (J Geom Anal 11(3):491-507, 2001).