dc.creatorForzani, Liliana Maria
dc.creatorHarboure, Eleonor Ofelia
dc.creatorScotto, Roberto Aníbal
dc.date.accessioned2019-09-24T16:32:49Z
dc.date.accessioned2022-10-15T04:25:43Z
dc.date.available2019-09-24T16:32:49Z
dc.date.available2022-10-15T04:25:43Z
dc.date.created2019-09-24T16:32:49Z
dc.date.issued2009-05
dc.identifierForzani, Liliana Maria; Harboure, Eleonor Ofelia; Scotto, Roberto Aníbal; Weak type inequality for a family of singular integral operators related with the Gaussian measure; Springer; Potential Analysis; 31; 2; 5-2009; 103-116
dc.identifier0926-2601
dc.identifierhttp://hdl.handle.net/11336/84274
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4344962
dc.description.abstractIn this paper we study a family of singular integral operators that generalizes the higher order Gaussian Riesz Transforms and find the right weight w to make them continuous from L1(wdγ) into L1,∞(dγ), being dγ(x) = e-x2dx. Some boundedness properties of these operators had already been derived by Urbina (Ann Scuola Norm Sup Pisa Cl Sci 17(4):531-567, 1990) and Pérez (J Geom Anal 11(3):491-507, 2001).
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11118-009-9124-x
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFUNCTIONAL CALCULUS
dc.subjectGAUSSIAN MEASURE
dc.subjectORNSTEIN-UHLENBECK OPERATOR
dc.subjectSINGULAR INTEGRALS
dc.titleWeak type inequality for a family of singular integral operators related with the Gaussian measure
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución