dc.creator | Forzani, Liliana Maria | |
dc.creator | Harboure, Eleonor Ofelia | |
dc.creator | Scotto, Roberto Aníbal | |
dc.date.accessioned | 2019-09-24T16:32:49Z | |
dc.date.accessioned | 2022-10-15T04:25:43Z | |
dc.date.available | 2019-09-24T16:32:49Z | |
dc.date.available | 2022-10-15T04:25:43Z | |
dc.date.created | 2019-09-24T16:32:49Z | |
dc.date.issued | 2009-05 | |
dc.identifier | Forzani, Liliana Maria; Harboure, Eleonor Ofelia; Scotto, Roberto Aníbal; Weak type inequality for a family of singular integral operators related with the Gaussian measure; Springer; Potential Analysis; 31; 2; 5-2009; 103-116 | |
dc.identifier | 0926-2601 | |
dc.identifier | http://hdl.handle.net/11336/84274 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4344962 | |
dc.description.abstract | In this paper we study a family of singular integral operators that generalizes the higher order Gaussian Riesz Transforms and find the right weight w to make them continuous from L1(wdγ) into L1,∞(dγ), being dγ(x) = e-x2dx. Some boundedness properties of these operators had already been derived by Urbina (Ann Scuola Norm Sup Pisa Cl Sci 17(4):531-567, 1990) and Pérez (J Geom Anal 11(3):491-507, 2001). | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11118-009-9124-x | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | FUNCTIONAL CALCULUS | |
dc.subject | GAUSSIAN MEASURE | |
dc.subject | ORNSTEIN-UHLENBECK OPERATOR | |
dc.subject | SINGULAR INTEGRALS | |
dc.title | Weak type inequality for a family of singular integral operators related with the Gaussian measure | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |