info:eu-repo/semantics/article
Free 2-step nilpotent Lie algebras and indecomposable representations
Fecha
2018-07Registro en:
Cagliero, Leandro Roberto; Frez, Luis Gutiérrez; Szechtman, Fernando; Free 2-step nilpotent Lie algebras and indecomposable representations; Taylor & Francis; Communications In Algebra; 46; 7; 7-2018; 2990-3005
0092-7872
1532-4125
CONICET Digital
CONICET
Autor
Cagliero, Leandro Roberto
Frez, Luis Gutiérrez
Szechtman, Fernando
Resumen
Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block.