dc.creator | Cagliero, Leandro Roberto | |
dc.creator | Frez, Luis Gutiérrez | |
dc.creator | Szechtman, Fernando | |
dc.date.accessioned | 2019-11-11T17:23:08Z | |
dc.date.accessioned | 2022-10-15T00:54:15Z | |
dc.date.available | 2019-11-11T17:23:08Z | |
dc.date.available | 2022-10-15T00:54:15Z | |
dc.date.created | 2019-11-11T17:23:08Z | |
dc.date.issued | 2018-07 | |
dc.identifier | Cagliero, Leandro Roberto; Frez, Luis Gutiérrez; Szechtman, Fernando; Free 2-step nilpotent Lie algebras and indecomposable representations; Taylor & Francis; Communications In Algebra; 46; 7; 7-2018; 2990-3005 | |
dc.identifier | 0092-7872 | |
dc.identifier | http://hdl.handle.net/11336/88475 | |
dc.identifier | 1532-4125 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4327093 | |
dc.description.abstract | Given an algebraically closed field F of characteristic 0 and an F-vector space V, let L(V) = V⊕Λ2(V) denote the free 2-step nilpotent Lie algebra associated to V. In this paper, we classify all uniserial representations of the solvable Lie algebra &= ⟨x⟩⋉L(V), where x acts on V via an arbitrary invertible Jordan block. | |
dc.language | eng | |
dc.publisher | Taylor & Francis | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00927872.2017.1404086 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/admin/retrieve/5de9f711-4569-4267-89b4-74be97d2c22f/CONICET_Digital_Nro.2d9e3c3e-9d8d-4ec3-b8ea-57601cd7ccf8_A.pdf | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | FREE 2-STEP NILPOTENT LIE ALGEBRA | |
dc.subject | UNISERIAL REPRESENTATION | |
dc.title | Free 2-step nilpotent Lie algebras and indecomposable representations | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |