info:eu-repo/semantics/article
The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform
Date
2007-07Registration in:
Bernardis, Ana Lucia; Martín Reyes, F.J.; The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform; Royal Society of Edinburgh; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 130; 2; 7-2007; 225-237
0308-2105
CONICET Digital
CONICET
Author
Bernardis, Ana Lucia
Martín Reyes, F.J.
Abstract
Recently, Sarrión and the authors gave a sufficient condition on invertible Lamperti operators on Lp which guarantees the convergence in the Cesàro-α sense of the ergodic averages and the ergodic Hilbert transform for all f ∈ Lp with p > 1/(1 + α) and −1 < α ≤ 0. The result does not hold for the space L1/(1 + α). In this paper we give a positive result for the smaller Lorentz space L1/(1 + α),1.