dc.creatorBernardis, Ana Lucia
dc.creatorMartín Reyes, F.J.
dc.date.accessioned2020-03-04T16:17:29Z
dc.date.accessioned2022-10-14T23:48:31Z
dc.date.available2020-03-04T16:17:29Z
dc.date.available2022-10-14T23:48:31Z
dc.date.created2020-03-04T16:17:29Z
dc.date.issued2007-07
dc.identifierBernardis, Ana Lucia; Martín Reyes, F.J.; The limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform; Royal Society of Edinburgh; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 130; 2; 7-2007; 225-237
dc.identifier0308-2105
dc.identifierhttp://hdl.handle.net/11336/98755
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4321238
dc.description.abstractRecently, Sarrión and the authors gave a sufficient condition on invertible Lamperti operators on Lp which guarantees the convergence in the Cesàro-α sense of the ergodic averages and the ergodic Hilbert transform for all f ∈ Lp with p > 1/(1 + α) and −1 < α ≤ 0. The result does not hold for the space L1/(1 + α). In this paper we give a positive result for the smaller Lorentz space L1/(1 + α),1.
dc.languageeng
dc.publisherRoyal Society of Edinburgh
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1017/S0308210500000123
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCesàro-α convergence
dc.titleThe limit case of the Cesàro-α convergence of the ergodic averages and the ergodic Hilbert transform
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución