info:eu-repo/semantics/article
Numerical simulation of mushrooms during freezing using the FEM and an enthalpy: Kirchhoff formulation
Fecha
2011-06Registro en:
Santos, Maria Victoria; Lespinard, Alejandro Rafael; Numerical simulation of mushrooms during freezing using the FEM and an enthalpy: Kirchhoff formulation; Springer; Heat and Mass Transfer; 47; 12; 6-2011; 1671-1683
0947-7411
CONICET Digital
CONICET
Autor
Santos, Maria Victoria
Lespinard, Alejandro Rafael
Resumen
The shelf life of mushrooms is very limited since they are susceptible to physical and microbial attack; therefore they are usually blanched and immediately frozen for commercial purposes. The aim of this work was to develop a numerical model using the finite element technique to predict freezing times of mushrooms considering the actual shape of the product. The original heat transfer equation was reformulated using a combined enthalpy-Kirchhoff formulation, therefore an own computational program using Matlab 6.5 (MathWorks, Natick, Massachusetts) was developed, considering the difficulties encountered when simulating this non-linear problem in commercial softwares. Digital images were used to generate the irregular contour and the domain discretization. The numerical predictions agreed with the experimental time–temperature curves during freezing of mushrooms (maximum absolute error <3.2°C) obtaining accurate results and minimum computer processing times. The codes were then applied to determine required processing times for different operating conditions (external fluid temperatures and surface heat transfer coefficients).