info:eu-repo/semantics/article
On the Hausdorff dimension of pinned distance sets
Fecha
2019-04-17Registro en:
Shmerkin, Pablo Sebastian; On the Hausdorff dimension of pinned distance sets; Hebrew Univ Magnes Press; Israel Journal Of Mathematics; 230; 2; 17-4-2019; 949-972
0021-2172
CONICET Digital
CONICET
Autor
Shmerkin, Pablo Sebastian
Resumen
We prove that if A is a Borel set in the plane of equal Hausdorff and packing dimension s > 1, then the set of pinned distances {|x − y| : y ∈ A} has full Hausdorff dimension for all x outside of a set of Hausdorff dimension 1 (in particular, for many x ∈ A). This verifies a strong variant of Falconer’s distance set conjecture for sets of equal Hausdorff and packing dimension, outside the endpoint s = 1.