dc.creatorShmerkin, Pablo Sebastian
dc.date.accessioned2021-01-18T13:15:22Z
dc.date.accessioned2022-10-14T22:12:18Z
dc.date.available2021-01-18T13:15:22Z
dc.date.available2022-10-14T22:12:18Z
dc.date.created2021-01-18T13:15:22Z
dc.date.issued2019-04-17
dc.identifierShmerkin, Pablo Sebastian; On the Hausdorff dimension of pinned distance sets; Hebrew Univ Magnes Press; Israel Journal Of Mathematics; 230; 2; 17-4-2019; 949-972
dc.identifier0021-2172
dc.identifierhttp://hdl.handle.net/11336/122819
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4312555
dc.description.abstractWe prove that if A is a Borel set in the plane of equal Hausdorff and packing dimension s > 1, then the set of pinned distances {|x − y| : y ∈ A} has full Hausdorff dimension for all x outside of a set of Hausdorff dimension 1 (in particular, for many x ∈ A). This verifies a strong variant of Falconer’s distance set conjecture for sets of equal Hausdorff and packing dimension, outside the endpoint s = 1.
dc.languageeng
dc.publisherHebrew Univ Magnes Press
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11856-019-1847-9
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11856-019-1847-9
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDistance sets
dc.subjectHausdorff dimension
dc.titleOn the Hausdorff dimension of pinned distance sets
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución