Artículo / Article
Integration and comparison of different genomic data for outcome prediction in cancer
Fecha
29/10/2005Registro en:
BioData Mining
Autor
Gomez Rueda, Hugo
Martínez Ledesma, Emmanuel
Martínez Torteya, Antonio
Palacios Corona, Rebeca
Treviño, Victor
Institución
Resumen
In cancer, large-scale technologies such as next-generation sequencing and microarrays have produced a wide number of genomic features such as DNA copy number alterations (CNA), mRNA expression (EXPR), microRNA expression (MIRNA), and DNA somatic mutations (MUT), among others. Several analyses of a specific type of these genomic data have generated many prognostic biomarkers in cancer. However, it is uncertain which of these data is more powerful and whether the best data-type is cancer-type dependent. Therefore, our purpose is to characterize the prognostic power of models obtained from different genomic data types, cancer types, and algorithms. For this, we compared the prognostic power using the concordance and prognostic index of models obtained from EXPR, MIRNA, CNA, MUT data and their integration for ovarian serous cystadenocarcinoma (OV), multiform glioblastoma (GBM), lung adenocarcinoma (LUAD), and breast cancer (BRCA) datasets from The Cancer Genome Atlas repository. We used three different algorithms for prognostic model selection based on constrained particle swarm optimization (CPSO), network feature selection (NFS), and least absolute shrinkage and selection operator (LASSO).