Artículos de revistas
ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
Autor
ARGYROS,IOANNIS K
HILOUT,SAÏD
Institución
Resumen
We provide a local convergence analysis for a Newton-type method to approximate a locally unique solution of an operator equation in Banach spaces. The local convergence of this method was studied in the elegant work by Werner in [11], using information on the domain of the operator. Here, we use information only at a point and a gamma-type condition [4], [10]. It turns out that our radius of convergence is larger, and more general than the corresponding one in [10]. Moreover the same can hold true when our radius is compared with the ones given in [9] and [11]. A numerical example is also provided