dc.creator | ARGYROS,IOANNIS K | |
dc.creator | HILOUT,SAÏD | |
dc.date | 2008-05-01 | |
dc.date.accessioned | 2017-03-07T16:00:50Z | |
dc.date.available | 2017-03-07T16:00:50Z | |
dc.identifier | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000100001 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/394560 | |
dc.description | We provide a local convergence analysis for a Newton-type method to approximate a locally unique solution of an operator equation in Banach spaces. The local convergence of this method was studied in the elegant work by Werner in [11], using information on the domain of the operator. Here, we use information only at a point and a gamma-type condition [4], [10]. It turns out that our radius of convergence is larger, and more general than the corresponding one in [10]. Moreover the same can hold true when our radius is compared with the ones given in [9] and [11]. A numerical example is also provided | |
dc.format | text/html | |
dc.language | en | |
dc.publisher | Universidad Católica del Norte, Departamento de Matemáticas | |
dc.source | Proyecciones (Antofagasta) v.27 n.1 2008 | |
dc.subject | Banach space | |
dc.subject | Newton-type method | |
dc.subject | convergence | |
dc.subject | gamma-type condition | |
dc.subject | local convergence | |
dc.subject | Fréchet-derivative | |
dc.subject | radius of convergence | |
dc.title | ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION | |
dc.type | Artículos de revistas | |