dc.creatorARGYROS,IOANNIS K
dc.creatorHILOUT,SAÏD
dc.date2008-05-01
dc.date.accessioned2017-03-07T16:00:50Z
dc.date.available2017-03-07T16:00:50Z
dc.identifierhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000100001
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/394560
dc.descriptionWe provide a local convergence analysis for a Newton-type method to approximate a locally unique solution of an operator equation in Banach spaces. The local convergence of this method was studied in the elegant work by Werner in [11], using information on the domain of the operator. Here, we use information only at a point and a gamma-type condition [4], [10]. It turns out that our radius of convergence is larger, and more general than the corresponding one in [10]. Moreover the same can hold true when our radius is compared with the ones given in [9] and [11]. A numerical example is also provided
dc.formattext/html
dc.languageen
dc.publisherUniversidad Católica del Norte, Departamento de Matemáticas
dc.sourceProyecciones (Antofagasta) v.27 n.1 2008
dc.subjectBanach space
dc.subjectNewton-type method
dc.subjectconvergence
dc.subjectgamma-type condition
dc.subjectlocal convergence
dc.subjectFréchet-derivative
dc.subjectradius of convergence
dc.titleON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución