Artículos de revistas
MAXIMAL REGULARITY FOR DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN PERIODIC VECTOR-VALUED FUNCTION SPACES
Registro en:
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY Volumen: 56 Número: 3 Páginas: 853-871 DOI: 10.1017/S0013091513000606
0013-0915
Autor
Lizama, C.
Ponce, R.
Institución
Resumen
Ponce, R (Ponce, Rodrigo)[ 2 ] Univ Talca, Inst Matemat & Fis, Talca, Chile Let A and M be closed linear operators defined on a complex Banach space X and let a is an element of L-1(R+) be a scalar kernel. We use operator-valued Fourier multipliers techniques to obtain necessary and sufficient conditions to guarantee the existence and uniqueness of periodic solutions to the equation
d/dt (Mu(t)) = Au(t) + integral(t)(-infinity) a(t - s)Au(s)ds + f(t), t > 0,
with initial condition Mu(0) = Mu(2 pi), solely in terms of spectral properties of the data. Our results are obtained in the scales of periodic Besov, Triebel-Lizorkin and Lebesgue vector-valued function spaces.