dc.creatorLizama, C.
dc.creatorPonce, R.
dc.date2013-09-30T21:26:34Z
dc.date2013-09-30T21:26:34Z
dc.date2013-10
dc.date.accessioned2017-03-07T15:00:07Z
dc.date.available2017-03-07T15:00:07Z
dc.identifierPROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY Volumen: 56 Número: 3 Páginas: 853-871 DOI: 10.1017/S0013091513000606
dc.identifier0013-0915
dc.identifierhttp://dspace.utalca.cl/handle/1950/9384
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/376384
dc.descriptionPonce, R (Ponce, Rodrigo)[ 2 ] Univ Talca, Inst Matemat & Fis, Talca, Chile
dc.descriptionLet A and M be closed linear operators defined on a complex Banach space X and let a is an element of L-1(R+) be a scalar kernel. We use operator-valued Fourier multipliers techniques to obtain necessary and sufficient conditions to guarantee the existence and uniqueness of periodic solutions to the equation d/dt (Mu(t)) = Au(t) + integral(t)(-infinity) a(t - s)Au(s)ds + f(t), t > 0, with initial condition Mu(0) = Mu(2 pi), solely in terms of spectral properties of the data. Our results are obtained in the scales of periodic Besov, Triebel-Lizorkin and Lebesgue vector-valued function spaces.
dc.languageen
dc.publisherCAMBRIDGE UNIV PRESS, 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
dc.subjectdifferential equations with delay
dc.subjectoperator-valued Fourier multipliers
dc.subjectR-boundedness
dc.subjectUMD spaces
dc.subjectBesov vector-valued spaces
dc.subjectLebesgue vector-valued spaces
dc.titleMAXIMAL REGULARITY FOR DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN PERIODIC VECTOR-VALUED FUNCTION SPACES
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución