dc.creator | Lizama, C. | |
dc.creator | Ponce, R. | |
dc.date | 2013-09-30T21:26:34Z | |
dc.date | 2013-09-30T21:26:34Z | |
dc.date | 2013-10 | |
dc.date.accessioned | 2017-03-07T15:00:07Z | |
dc.date.available | 2017-03-07T15:00:07Z | |
dc.identifier | PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY Volumen: 56 Número: 3 Páginas: 853-871 DOI: 10.1017/S0013091513000606 | |
dc.identifier | 0013-0915 | |
dc.identifier | http://dspace.utalca.cl/handle/1950/9384 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/376384 | |
dc.description | Ponce, R (Ponce, Rodrigo)[ 2 ] Univ Talca, Inst Matemat & Fis, Talca, Chile | |
dc.description | Let A and M be closed linear operators defined on a complex Banach space X and let a is an element of L-1(R+) be a scalar kernel. We use operator-valued Fourier multipliers techniques to obtain necessary and sufficient conditions to guarantee the existence and uniqueness of periodic solutions to the equation
d/dt (Mu(t)) = Au(t) + integral(t)(-infinity) a(t - s)Au(s)ds + f(t), t > 0,
with initial condition Mu(0) = Mu(2 pi), solely in terms of spectral properties of the data. Our results are obtained in the scales of periodic Besov, Triebel-Lizorkin and Lebesgue vector-valued function spaces. | |
dc.language | en | |
dc.publisher | CAMBRIDGE UNIV PRESS, 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA | |
dc.subject | differential equations with delay | |
dc.subject | operator-valued Fourier multipliers | |
dc.subject | R-boundedness | |
dc.subject | UMD spaces | |
dc.subject | Besov vector-valued spaces | |
dc.subject | Lebesgue vector-valued spaces | |
dc.title | MAXIMAL REGULARITY FOR DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN PERIODIC VECTOR-VALUED FUNCTION SPACES | |
dc.type | Artículos de revistas | |