dc.contributorCardenas Sandoval, Rosy Paola
dc.creatorArbeláez, Myriam Fernanda
dc.date.accessioned2020-07-30T03:15:08Z
dc.date.accessioned2022-09-22T13:46:45Z
dc.date.available2020-07-30T03:15:08Z
dc.date.available2022-09-22T13:46:45Z
dc.date.created2020-07-30T03:15:08Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/25579
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3432412
dc.description.abstractObjective: To determine the effect of gait training using low-cost technology on spatiotemporal, kinematic and gait quality variables in the sagittal plane in children with unilateral cerebral palsy. Method: Pretest - posttest design. Pilot study with three participants aged 4 to 6, GMFCS level II. 10 15-minute training sessions were held 5 times a week, using a technological device with visual and auditory feedback and pre- and post-intervention gait analysis. Biomechanical variables were analyzed with descriptive statistics. Results: Post-intervention changes were found in step length, velocity and kinematics. Changes in gait speed and quality were observed during the training session. Conclusions: Gait training with external sensory stimuli can improve gait quality and biomechanics gait in children with CP. Further studies are necessary to validate and generalize these results.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherMaestría en Ciencias de la Rehabilitación
dc.publisherEscuela de Medicina y Ciencias de la Salud
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.sourceRosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B JB. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol. 2007;49(6):480.
dc.sourceOskoui M, Coutinho F, Dykeman J, Jetté N, Pringsheim T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509-519. doi:10.1111/dmcn.12080
dc.sourceWorld Health Organization. International Classification of Functioning, Disability and Health Children & Youth Version. WHO Library Cataloguing-in-Publication Data; 2007.
dc.sourceSchenker R, Coster W, Parush S. Participation and activity performance of students with cerebral palsy within the school environment. Disabil Rehabil. 2005;27(10):539-552. https://doi.org/10.1080/09638280400018437
dc.sourceBrændvik SM, Goihl T, Braaten RS, Vereijken B. The Effect of Increased Gait Speed on Asymmetry and Variability in Children With Cerebral Palsy. Front Neurol. 2020;10(January):1-8. doi:10.3389/fneur.2019.01399
dc.sourceFeng J, Pierce R, Do KP, Aiona M. Motion of the center of mass in children with spastic hemiplegia: Balance, energy transfer, and work performed by the affected leg vs. the unaffected leg. Gait Posture. 2014;39(1):570-576. doi:10.1016/j.gaitpost.2013.09.009
dc.sourceSchwartz MH, Rozumalski A, Trost JP. The effect of walking speed on the gait of typically developing children. J Biomech. 2008;41(8):1639-1650. doi:10.1016/j.jbiomech.2008.03.015
dc.sourceWallard L, Dietrich G, Kerlirzin Y, Bredin J. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur J Paediatr Neurol. 2017;21(3):557-564. doi:10.1016/j.ejpn.2017.01.012
dc.sourceBrien M, Sveistrup H. An intensive virtual reality program improves functional balance and mobility of adolescents with cerebral palsy. Pediatr Phys Ther. 2011. doi:10.1097/PEP.0b013e318227ca0f
dc.sourceVan Delden RW, Janssen J, ter Stal S, et al. Personalization of Gait Rehabilitation Games on a Pressure Sensitive Interactive LED Floor. In: Proceedings of the International Workshop on Personalization in Persuasive Technology (PPT’16). Salzburg, Austria; 2016.
dc.sourceVan Der Krogt MM, Sloot LH, Harlaar J. Overground versus self-paced treadmill walking in a virtual environment in children with cerebral palsy. Gait Posture. 2014;40(4):587-593. doi:10.1016/j.gaitpost.2014.07.003
dc.sourceMoreno-Hernández A, Rodríguez-Reyes G, Quiñones-Urióstegui I, Núñez-Carrera L, Pérez-SanPablo AI. Temporal and spatial gait parameters analysis in non-pathological Mexican children. Gait Posture. 2010;32(1):78-81. doi:10.1016/j.gaitpost.2010.03.010
dc.sourceHillman SJ, Stansfield BW, Richardson AM, Robb JE. Development of temporal and distance parameters of gait in normal children. Gait Posture. 2009;29(1):81-85. doi:10.1016/j.gaitpost.2008.06.012
dc.sourceTurriago C, Medina A, Delgado L, Vargas V, Arbeláez F. Variación de la marcha normal de acuerdo a la edad en la población infantil de Bogotá. In: 7° Congreso de Ortopedia Infantil SLAOTI. Cartagena, Colombia; 2018.
dc.sourcePalisano R, Rosenbaum P, Bartlett D, et al. GMFCS – E & R Clasificación de la Función Motora Gruesa Extendida y Revisada. Ref Dev Med Child Neurol. 1997;39:214-223.
dc.sourceBartonek A, Lidbeck CM, Gutierrez-Farewik EM. Influence of external visual focus on gait in children with bilateral cerebral palsy. Pediatr Phys Ther. 2016. doi:10.1097/PEP.0000000000000282
dc.sourceShumway-Cook A. Motor Control. Cuarta edi. (Lippincott Williams & Wilkins, ed.). Philadelphia; 2012.
dc.sourceDeci, E. L., Koestner, R., & Ryan RM. A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological. Psychol Bull. 1999;125:627-668.
dc.sourceCulyer AJ, Bombard Y. An equity framework for health technology assessments. Med Decis Mak. 2012;32(3):428-441. doi:10.1177/0272989X11426484
dc.sourceSchwartz MH, Rozumalski A. The gait deviation index: A new comprehensive index of gait pathology. Gait Posture. 2008;28(3):351-357. doi:10.1016/j.gaitpost.2008.05.001
dc.sourceRosenbaum PL, Walter SD, Hanna SE, et al. Prognosis for gross motor function in cerebral palsy: Creation of motor development curves. J Am Med Assoc. 2002;288(11):1357-1363. doi:10.1001/jama.288.11.1357
dc.sourceMa Y, Liang Y, Kang X, Shao M, Siemelink L, Zhang Y. Gait characteristics of children with spastic cerebral palsy during inclined treadmill walking under a virtual reality environment. Appl Bionics Biomech. 2019;2019. doi:10.1155/2019/8049156
dc.sourceBooth ATC, Buizer AI, Meyns P, Oude Lansink ILB, Steenbrink F, van der Krogt MM. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018;60(9):866-883. doi:10.1111/dmcn.13708
dc.sourceMoreau NG, Bodkin AW, Bjornson K, Hobbs A, Soileau M, Lahasky K. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: Systematic review and Meta-Analysis. Phys Ther. 2016;96(12):1938-1954. doi:10.2522/ptj.20150401
dc.sourceWiart L, Rosychuk RJ, Wright FV. Evaluation of the effectiveness of robotic gait training and gait-focused physical therapy programs for children and youth with cerebral palsy: a mixed methods RCT. BMC Neurol. 2016;16(1):86. doi:10.1186/s12883-016-0582-7
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectMarcha
dc.subjectMarcha
dc.subjectParálisis Cerebral
dc.subjectRehabilitación de Marcha
dc.subjectParálisis cerebral
dc.subjectRehabilitación de marcha
dc.subjectTecnología en Rehabilitación
dc.subjectTecnología en rehabilitación
dc.titleEfecto en la biomecánica de la marcha del entrenamiento con un dispositivo tecnológico en niños con parálisis cerebral espástica: Estudio piloto
dc.typemasterThesis


Este ítem pertenece a la siguiente institución