dc.contributor | Cardenas Sandoval, Rosy Paola | |
dc.creator | Arbeláez, Myriam Fernanda | |
dc.date.accessioned | 2020-07-30T03:15:08Z | |
dc.date.accessioned | 2022-09-22T13:46:45Z | |
dc.date.available | 2020-07-30T03:15:08Z | |
dc.date.available | 2022-09-22T13:46:45Z | |
dc.date.created | 2020-07-30T03:15:08Z | |
dc.identifier | https://repository.urosario.edu.co/handle/10336/25579 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3432412 | |
dc.description.abstract | Objective: To determine the effect of gait training using low-cost technology on spatiotemporal, kinematic and gait quality variables in the sagittal plane in children with unilateral cerebral palsy. Method: Pretest - posttest design. Pilot study with three participants aged 4 to 6, GMFCS level II. 10 15-minute training sessions were held 5 times a week, using a technological device with visual and auditory feedback and pre- and post-intervention gait analysis. Biomechanical variables were analyzed with descriptive statistics. Results: Post-intervention changes were found in step length, velocity and kinematics. Changes in gait speed and quality were observed during the training session. Conclusions: Gait training with external sensory stimuli can improve gait quality and biomechanics gait in children with CP. Further studies are necessary to validate and generalize these results. | |
dc.language | spa | |
dc.publisher | Universidad del Rosario | |
dc.publisher | Maestría en Ciencias de la Rehabilitación | |
dc.publisher | Escuela de Medicina y Ciencias de la Salud | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. | |
dc.source | Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B JB. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol. 2007;49(6):480. | |
dc.source | Oskoui M, Coutinho F, Dykeman J, Jetté N, Pringsheim T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509-519. doi:10.1111/dmcn.12080 | |
dc.source | World Health Organization. International Classification of Functioning, Disability and Health Children & Youth Version. WHO Library Cataloguing-in-Publication Data; 2007. | |
dc.source | Schenker R, Coster W, Parush S. Participation and activity performance of students with cerebral palsy within the school environment. Disabil Rehabil. 2005;27(10):539-552. https://doi.org/10.1080/09638280400018437 | |
dc.source | Brændvik SM, Goihl T, Braaten RS, Vereijken B. The Effect of Increased Gait Speed on Asymmetry and Variability in Children With Cerebral Palsy. Front Neurol. 2020;10(January):1-8. doi:10.3389/fneur.2019.01399 | |
dc.source | Feng J, Pierce R, Do KP, Aiona M. Motion of the center of mass in children with spastic hemiplegia: Balance, energy transfer, and work performed by the affected leg vs. the unaffected leg. Gait Posture. 2014;39(1):570-576. doi:10.1016/j.gaitpost.2013.09.009 | |
dc.source | Schwartz MH, Rozumalski A, Trost JP. The effect of walking speed on the gait of typically developing children. J Biomech. 2008;41(8):1639-1650. doi:10.1016/j.jbiomech.2008.03.015 | |
dc.source | Wallard L, Dietrich G, Kerlirzin Y, Bredin J. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur J Paediatr Neurol. 2017;21(3):557-564. doi:10.1016/j.ejpn.2017.01.012 | |
dc.source | Brien M, Sveistrup H. An intensive virtual reality program improves functional balance and mobility of adolescents with cerebral palsy. Pediatr Phys Ther. 2011. doi:10.1097/PEP.0b013e318227ca0f | |
dc.source | Van Delden RW, Janssen J, ter Stal S, et al. Personalization of Gait Rehabilitation Games on a Pressure Sensitive Interactive LED Floor. In: Proceedings of the International Workshop on Personalization in Persuasive Technology (PPT’16). Salzburg, Austria; 2016. | |
dc.source | Van Der Krogt MM, Sloot LH, Harlaar J. Overground versus self-paced treadmill walking in a virtual environment in children with cerebral palsy. Gait Posture. 2014;40(4):587-593. doi:10.1016/j.gaitpost.2014.07.003 | |
dc.source | Moreno-Hernández A, Rodríguez-Reyes G, Quiñones-Urióstegui I, Núñez-Carrera L, Pérez-SanPablo AI. Temporal and spatial gait parameters analysis in non-pathological Mexican children. Gait Posture. 2010;32(1):78-81. doi:10.1016/j.gaitpost.2010.03.010 | |
dc.source | Hillman SJ, Stansfield BW, Richardson AM, Robb JE. Development of temporal and distance parameters of gait in normal children. Gait Posture. 2009;29(1):81-85. doi:10.1016/j.gaitpost.2008.06.012 | |
dc.source | Turriago C, Medina A, Delgado L, Vargas V, Arbeláez F. Variación de la marcha normal de acuerdo a la edad en la población infantil de Bogotá. In: 7° Congreso de Ortopedia Infantil SLAOTI. Cartagena, Colombia; 2018. | |
dc.source | Palisano R, Rosenbaum P, Bartlett D, et al. GMFCS – E & R Clasificación de la Función Motora Gruesa Extendida y Revisada. Ref Dev Med Child Neurol. 1997;39:214-223. | |
dc.source | Bartonek A, Lidbeck CM, Gutierrez-Farewik EM. Influence of external visual focus on gait in children with bilateral cerebral palsy. Pediatr Phys Ther. 2016. doi:10.1097/PEP.0000000000000282 | |
dc.source | Shumway-Cook A. Motor Control. Cuarta edi. (Lippincott Williams & Wilkins, ed.). Philadelphia; 2012. | |
dc.source | Deci, E. L., Koestner, R., & Ryan RM. A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological. Psychol Bull. 1999;125:627-668. | |
dc.source | Culyer AJ, Bombard Y. An equity framework for health technology assessments. Med Decis Mak. 2012;32(3):428-441. doi:10.1177/0272989X11426484 | |
dc.source | Schwartz MH, Rozumalski A. The gait deviation index: A new comprehensive index of gait pathology. Gait Posture. 2008;28(3):351-357. doi:10.1016/j.gaitpost.2008.05.001 | |
dc.source | Rosenbaum PL, Walter SD, Hanna SE, et al. Prognosis for gross motor function in cerebral palsy: Creation of motor development curves. J Am Med Assoc. 2002;288(11):1357-1363. doi:10.1001/jama.288.11.1357 | |
dc.source | Ma Y, Liang Y, Kang X, Shao M, Siemelink L, Zhang Y. Gait characteristics of children with spastic cerebral palsy during inclined treadmill walking under a virtual reality environment. Appl Bionics Biomech. 2019;2019. doi:10.1155/2019/8049156 | |
dc.source | Booth ATC, Buizer AI, Meyns P, Oude Lansink ILB, Steenbrink F, van der Krogt MM. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018;60(9):866-883. doi:10.1111/dmcn.13708 | |
dc.source | Moreau NG, Bodkin AW, Bjornson K, Hobbs A, Soileau M, Lahasky K. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: Systematic review and Meta-Analysis. Phys Ther. 2016;96(12):1938-1954. doi:10.2522/ptj.20150401 | |
dc.source | Wiart L, Rosychuk RJ, Wright FV. Evaluation of the effectiveness of robotic gait training and gait-focused physical therapy programs for children and youth with cerebral palsy: a mixed methods RCT. BMC Neurol. 2016;16(1):86. doi:10.1186/s12883-016-0582-7 | |
dc.source | instname:Universidad del Rosario | |
dc.source | reponame:Repositorio Institucional EdocUR | |
dc.subject | Marcha | |
dc.subject | Marcha | |
dc.subject | Parálisis Cerebral | |
dc.subject | Rehabilitación de Marcha | |
dc.subject | Parálisis cerebral | |
dc.subject | Rehabilitación de marcha | |
dc.subject | Tecnología en Rehabilitación | |
dc.subject | Tecnología en rehabilitación | |
dc.title | Efecto en la biomecánica de la marcha del entrenamiento con un dispositivo tecnológico en niños con parálisis cerebral espástica: Estudio piloto | |
dc.type | masterThesis | |