Tesis
Aprendizado semi-supervisionado e não supervisionado para análise de dados de expressão gênica
Fecha
2008-05-27Registro en:
ASSAO, Fabiana Mari. Aprendizado semi-supervisionado e não supervisionado para análise de dados de expressão gênica. 2008. 131 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2008.
Autor
Assao, Fabiana Mari
Institución
Resumen
Data clustering has been seen, in the last decades, as an important tool for gene expression data analysis. In recent years, due to the progress in gene annotation research, a
growing interest has been noticed for the semi-supervised clustering techniques, which use knowledge previously available about some gene functions to discover functions of other genes by means of clustering. This work investigates non-supervised and semi-supervised clustering algorithms applied to gene expression data. The goal is to perform an inspection on strengths and weaknesses of the use of such clustering methods and, based on these findings, to provide ways of obtaining results significant to biology. Algorithms with different characteristics were implemented and tested, with the objective of verifying evidences of eventual gains with the partial labeling, as compared to the non-supervised techniques. The experiments considered data sets from the gene expression domain as well as more generic domains. The obtained results were evaluated with validation measures usually applied in similar contexts. The analysis developed, though, emphasize the important role of computational techniques in biological data analysis, by accelerating the process of deriving results and conclusions, to better understand gene functions and structures. The results of this
stydy justify the large investiment in the research of behavior of semi-supervised techniques in gene expression data, as we shall see.