dc.contributorCamargo, Heloisa de Arruda
dc.contributorhttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4783179Z5
dc.contributorhttp://lattes.cnpq.br/3998840368387781
dc.creatorAssao, Fabiana Mari
dc.date.accessioned2009-09-21
dc.date.accessioned2016-06-02T19:05:34Z
dc.date.available2009-09-21
dc.date.available2016-06-02T19:05:34Z
dc.date.created2009-09-21
dc.date.created2016-06-02T19:05:34Z
dc.date.issued2008-05-27
dc.identifierASSAO, Fabiana Mari. Aprendizado semi-supervisionado e não supervisionado para análise de dados de expressão gênica. 2008. 131 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2008.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/399
dc.description.abstractData clustering has been seen, in the last decades, as an important tool for gene expression data analysis. In recent years, due to the progress in gene annotation research, a growing interest has been noticed for the semi-supervised clustering techniques, which use knowledge previously available about some gene functions to discover functions of other genes by means of clustering. This work investigates non-supervised and semi-supervised clustering algorithms applied to gene expression data. The goal is to perform an inspection on strengths and weaknesses of the use of such clustering methods and, based on these findings, to provide ways of obtaining results significant to biology. Algorithms with different characteristics were implemented and tested, with the objective of verifying evidences of eventual gains with the partial labeling, as compared to the non-supervised techniques. The experiments considered data sets from the gene expression domain as well as more generic domains. The obtained results were evaluated with validation measures usually applied in similar contexts. The analysis developed, though, emphasize the important role of computational techniques in biological data analysis, by accelerating the process of deriving results and conclusions, to better understand gene functions and structures. The results of this stydy justify the large investiment in the research of behavior of semi-supervised techniques in gene expression data, as we shall see.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.rightsAcesso Aberto
dc.subjectMétodo de agrupamento
dc.subjectAgrupamento semi-supervisionado
dc.subjectExpressão gênica
dc.subjectAprendizado do computador
dc.subjectBioinformática
dc.subjectAprendizado de Máquina
dc.subjectClustering
dc.subjectSemisupervised clustering
dc.subjectGene expression
dc.subjectMachine learning
dc.subjectBioinformatics
dc.titleAprendizado semi-supervisionado e não supervisionado para análise de dados de expressão gênica
dc.typeTesis


Este ítem pertenece a la siguiente institución