Actas de congresos
Robust and fast vowel recognition using optimum-path forest
Fecha
2010-11-08Registro en:
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, p. 2190-2193.
1520-6149
10.1109/ICASSP.2010.5495695
WOS:000287096002042
2-s2.0-78049379155
9039182932747194
6027713750942689
6542086226808067
0000-0002-0924-8024
Autor
Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
Universidade Estadual de Campinas (UNICAMP)
Institución
Resumen
The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Estructuras del reconocimiento. Sobre el reconocimiento, los derechos y la modernidad
Rodríguez Salón, Román -
Reconocimiento de patrones en imágenes no visibles: expresiones faciales y nebulosas planetarias
BENJAMIN HERNANDEZ VALENCIA