Artículo de revista
On speciality of binary-Lie algebras
Fecha
2011Registro en:
Journal of Algebra and its Applications, Volumen 10, Issue 2, 2018, Pages 257-268
02194988
10.1142/S0219498811004550
Autor
Arenas, Manuel
Shestakov, Ivan
Institución
Resumen
In the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A - is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A-s for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A-s for a simple binary (-1,1) superalgebra A. © 2011 World Scientific Publishing Company.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Identidades graduadas em álgebras não-associativas
Silva, Diogo Diniz Pereira da Silva e -
Estructura de álgebra de Poisson de la cohomología de ciertas álgebras de Lie nilpotentes
Gutierrez, Gonzalo Emanuel Matías (2022-07-29)Si g es un álgebra de Lie, la cohomología H**(g) tiene una estructura de súper-álgebra de Poisson con producto asociativo súper-conmutativo V y un súper-corchete de Lie {-,-} que se compatibiliza con el producto \vee en ... -
Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'
Resende, Adriana Souza