dc.creatorArenas, Manuel
dc.creatorShestakov, Ivan
dc.date.accessioned2018-12-20T14:06:13Z
dc.date.available2018-12-20T14:06:13Z
dc.date.created2018-12-20T14:06:13Z
dc.date.issued2011
dc.identifierJournal of Algebra and its Applications, Volumen 10, Issue 2, 2018, Pages 257-268
dc.identifier02194988
dc.identifier10.1142/S0219498811004550
dc.identifierhttps://repositorio.uchile.cl/handle/2250/153859
dc.description.abstractIn the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A - is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A-s for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A-s for a simple binary (-1,1) superalgebra A. © 2011 World Scientific Publishing Company.
dc.languageen
dc.publisherWorld Scientific Publishing Co. Pte Ltd
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Algebra and its Applications
dc.subject(-1,1)-algebra
dc.subjectAssocyclic algebra
dc.subjectbinary-Lie algebra
dc.subjectspeciality problem
dc.subjectsuper-algebra
dc.titleOn speciality of binary-Lie algebras
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución