Artículo de revista
Minimal heteroclinics for a class of fourth order ODE systems
Fecha
2018-08Registro en:
Nonlinear Analysis 173 (2018) 154–163
10.1016/j.na.2018.04.003
Autor
Smyrnelis, Panayotis
Institución
Resumen
We prove the existence of minimal heteroclinic orbits for a class of fourth order O.D.E. systems with variational structure. In our general set-up, the set of equilibria of these systems is a union of manifolds, and the heteroclinic orbits connect two disjoint components of this set. (C) 2018 Elsevier Ltd. All rights reserved.