dc.creatorSmyrnelis, Panayotis
dc.date.accessioned2018-09-27T19:26:51Z
dc.date.available2018-09-27T19:26:51Z
dc.date.created2018-09-27T19:26:51Z
dc.date.issued2018-08
dc.identifierNonlinear Analysis 173 (2018) 154–163
dc.identifier10.1016/j.na.2018.04.003
dc.identifierhttps://repositorio.uchile.cl/handle/2250/151820
dc.description.abstractWe prove the existence of minimal heteroclinic orbits for a class of fourth order O.D.E. systems with variational structure. In our general set-up, the set of equilibria of these systems is a union of manifolds, and the heteroclinic orbits connect two disjoint components of this set. (C) 2018 Elsevier Ltd. All rights reserved.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceNonlinear Analysis
dc.subjectFourth order equations
dc.subjectSystems of ODE
dc.subjectHeteroclinic orbit
dc.subjectMinimizer
dc.subjectVariational methods
dc.titleMinimal heteroclinics for a class of fourth order ODE systems
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución