dc.creator | Smyrnelis, Panayotis | |
dc.date.accessioned | 2018-09-27T19:26:51Z | |
dc.date.available | 2018-09-27T19:26:51Z | |
dc.date.created | 2018-09-27T19:26:51Z | |
dc.date.issued | 2018-08 | |
dc.identifier | Nonlinear Analysis 173 (2018) 154–163 | |
dc.identifier | 10.1016/j.na.2018.04.003 | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/151820 | |
dc.description.abstract | We prove the existence of minimal heteroclinic orbits for a class of fourth order O.D.E. systems with variational structure. In our general set-up, the set of equilibria of these systems is a union of manifolds, and the heteroclinic orbits connect two disjoint components of this set. (C) 2018 Elsevier Ltd. All rights reserved. | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.source | Nonlinear Analysis | |
dc.subject | Fourth order equations | |
dc.subject | Systems of ODE | |
dc.subject | Heteroclinic orbit | |
dc.subject | Minimizer | |
dc.subject | Variational methods | |
dc.title | Minimal heteroclinics for a class of fourth order ODE systems | |
dc.type | Artículo de revista | |