Artículos de revistas
Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
Fecha
2015-09Registro en:
Acinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 125; 9-2015; 681-698
0362-546X
CONICET Digital
CONICET
Autor
Acinas, Sonia Ester
Buri, L.
Giubergia, Graciela Olga
Mazzone, Fernando Dario
Schwindt, Erica Leticia
Resumen
In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I.