dc.creatorAcinas, Sonia Ester
dc.creatorBuri, L.
dc.creatorGiubergia, Graciela Olga
dc.creatorMazzone, Fernando Dario
dc.creatorSchwindt, Erica Leticia
dc.date.accessioned2018-06-28T19:46:50Z
dc.date.accessioned2018-11-06T12:01:57Z
dc.date.available2018-06-28T19:46:50Z
dc.date.available2018-11-06T12:01:57Z
dc.date.created2018-06-28T19:46:50Z
dc.date.issued2015-09
dc.identifierAcinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 125; 9-2015; 681-698
dc.identifier0362-546X
dc.identifierhttp://hdl.handle.net/11336/50482
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1862467
dc.description.abstractIn this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I.
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.na.2015.06.013
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X15002102
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectPERIODIC SOLUTION
dc.subjectORLICZ-SOBOLEV SPACES
dc.subjectEULER-LAGRANGE
dc.subjectN-FUNCTION
dc.subjectCRITICAL POINTS
dc.titleSome existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución