dc.creator | Acinas, Sonia Ester | |
dc.creator | Buri, L. | |
dc.creator | Giubergia, Graciela Olga | |
dc.creator | Mazzone, Fernando Dario | |
dc.creator | Schwindt, Erica Leticia | |
dc.date.accessioned | 2018-06-28T19:46:50Z | |
dc.date.accessioned | 2018-11-06T12:01:57Z | |
dc.date.available | 2018-06-28T19:46:50Z | |
dc.date.available | 2018-11-06T12:01:57Z | |
dc.date.created | 2018-06-28T19:46:50Z | |
dc.date.issued | 2015-09 | |
dc.identifier | Acinas, Sonia Ester; Buri, L.; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 125; 9-2015; 681-698 | |
dc.identifier | 0362-546X | |
dc.identifier | http://hdl.handle.net/11336/50482 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1862467 | |
dc.description.abstract | In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W1L Φ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the ∆2-condition. We conclude by discussing conditions for the existence of minima of I. | |
dc.language | eng | |
dc.publisher | Pergamon-Elsevier Science Ltd | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.na.2015.06.013 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X15002102 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | PERIODIC SOLUTION | |
dc.subject | ORLICZ-SOBOLEV SPACES | |
dc.subject | EULER-LAGRANGE | |
dc.subject | N-FUNCTION | |
dc.subject | CRITICAL POINTS | |
dc.title | Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |