Buscar
Mostrando ítems 1-10 de 45
Implementación de aritmética de torres de campos finitos binarios de extensión 2 en FPGAImplementation of tower of finite field arithmetics in binary quadratic forms for fpga
(Corporación Universidad de la Costa, 2019)
Low-complexity bit-parallel square root computation over GF(2(m)) for all trinomials
(Ieee Computer SocLos AlamitosEUA, 2008)
One dimensional groups definable in the p-adic numbers and groups definable in presburger arithmetic
(UniandesDoctorado en MatemáticasFacultad de CienciasDepartamento de Matemáticas, 2020)
Se decriben los grupos definibles en los números p-ádicos con el lenguaje de cuerpo valuado excepto por subgrupos de índice finite y cocientes finitos. Igualmente se describen los grupos definibles en la aritmética de ...
Hilbert symbols, class groups and quaternion algebras
(Universite de Bordeaux I, 2000)
© Université Bordeaux 1, 2000. tous droits réservés.Let B be a quaternion algebra over a number field k. To a pair of Hilbert symbols {a, b} and {c, d} for B we associate an invariant ρ = ρR([D(a, b)], [D(c, d)]) in a ...
A Note On Some Picard Curves Over Finite Fields
(Academic Press Inc., 2015)
Hardware architecture for pairing-based cryptography
(Instituto Nacional de Astrofísica, Óptica y Electrónica, 2013)
Hardware architecture for pairing-based cryptography
(Instituto Nacional de Astrofísica, Óptica y Electrónica, 2013)
Arithmetic and representation theory of wild character varieties
(European Mathematical Society, 2019-06-06)
We count points over a finite field on wild character varieties of Riemann surfaces for singularities with regular semi simple leading term. The new feature in our counting formulas is the appearance of characters of ...
Invariantes aritméticos em geometria hiperbólica
(Universidade Federal de Minas GeraisUFMG, 2014-07-23)
In this dissertation we study some important arithmetic invariants associated with three-dimensional hyperbolic manifolds. They are the trace fields, invariant trace fields and the quaternions algebra. Well studied in ...