Artículo
Effect of white spot syndrome virus (WSSV) and water exchange on survival and production of Litopenaeus vannamei under semi-intensive culture conditions.
Autor
Esparza Leal, Héctor Manuel; 203814
Ponce Palafox, Jesús Trinidad; 15860
Cabanillas Beltrán, Héctor; 202961
Flores Verduzco, Francisco;x1340444
Esparza Leal, Héctor Manuel
Ponce Palafox, Jesús Trinidad
Cabanillas Beltrán, Héctor
Flores Verduzco, Francisco
Institución
Resumen
A study was performed in two commercial shrimp farms in the province of Guasave, north of Sinaloa, Mexico, to assess the effects of the presence of the white spot syndrome virus (WSSV) and of water exchange on the growth rate, production, and survival of the Pacific white shrimp, Litopenaeus vannamei, during the fall-winter season in semi-intensive culture ponds. The experiment consisted of four treatments; in the first (T1), three earthen ponds with water exchange, were stocked with PCR-positive for white-spot syndrome virus (WSSV) postlarvae. In the second (T2), three earthen ponds were stocked likewise (PCR-positive), but without water exchange. In the third (T3), three earthen ponds, with water exchange were stocked with PCR-negative for white-spot syndrome virus (WSSV) postlarvae. In the fourth (T4), three earthen ponds were stocked likewise (PCR-negative), but without water exchange. The average growth rates were 0.56, 0.56, 0.80, and 0.75 g/week for T1, T2, T3, and T4, respectively. Survival was 23.2% (T1), 26.1% (T2), 64.3% (T3), and 66.1% (T4). Production ranged between 252.60 and 847.00 kg/ha, with the lowest production in T2 and the highest in T3. Feed conversion ratio ranged from 1.00 for T3 to 1.70 for T2. The final average weight ranged between 10.6 g (T2) to 12.5 g (T3). The WSSV can affect negatively the growth rate (30%), the survival (64%), and the production (69%) in comparison with PCR-negative organisms.No differences in weight were found between WSSV-infected and non-infected individual shrimps, as well as in nested-PCR positive against single-step PCR positive organisms.It found that the zero water exchange strategy could be feasible for the culture of the white shrimp L. vannamei at a commercial level during the fallwinter season.