dc.creatorWehrhahn, Claudia
dc.creatorBarrientos, Andrés F.
dc.creatorJara Vallejos, Alejandro Antonio
dc.date.accessioned2024-06-25T21:44:20Z
dc.date.accessioned2024-07-17T23:49:49Z
dc.date.available2024-06-25T21:44:20Z
dc.date.available2024-07-17T23:49:49Z
dc.date.created2024-06-25T21:44:20Z
dc.date.issued2022
dc.identifier10.1214/22-EJS2002
dc.identifier1935-7524
dc.identifierSCOPUS_ID:85128416045
dc.identifierhttp://doi.org/10.1214/22-EJS2002
dc.identifierhttps://repositorio.uc.cl/handle/11534/86856
dc.identifierWOS:000825293500045
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9510710
dc.description.abstractWe discuss Bayesian nonparametric procedures for the regression analysis of compositional responses, that is, data supported on a multivariate simplex. The procedures are based on a modified class of multivariate Bernstein polynomials and on the use of dependent stick-breaking processes. A general model and two simplified versions of the general model are discussed. Appealing theoretical properties such as continuity, association structure, support, and consistency of the posterior distribution are established. Additionally, we exploit the use of spike-and-slab priors for choosing the version of the model that best adapts to the complexity of the underlying true data-generating distribution. The performance of the proposed model is illustrated in a simulation study and in an application to solid waste data from Colombia.
dc.languageen
dc.publisherInstitute of Mathematical Statistics
dc.relationElectronic Journal of Statistics
dc.rightsATTRIBUTION 4.0 INTERNATIONAL
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsacceso abierto
dc.subjectDensity regression
dc.subjectdependent Dirichlet processes
dc.subjectDirichlet process
dc.subjectFully nonparametric regression
dc.titleDependent Bayesian nonparametric modeling of compositional data using random Bernstein polynomials
dc.typeartículo


Este ítem pertenece a la siguiente institución