dc.creatorMichalska, H
dc.creatorTorres Torriti, Miguel Attilio
dc.date.accessioned2024-05-23T13:48:16Z
dc.date.accessioned2024-07-17T22:15:28Z
dc.date.available2024-05-23T13:48:16Z
dc.date.available2024-07-17T22:15:28Z
dc.date.created2024-05-23T13:48:16Z
dc.date.issued2003
dc.identifier10.1016/S0167-6911(03)00169-5
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000186172900005&KeyUID=WOS:000186172900005
dc.identifierhttps://repositorio.uc.cl/handle/11534/85736
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9510255
dc.description.abstractThe paper presents an approach to the construction of stabilizing feedback for strongly nonlinear systems. The class of systems of interest includes systems with drift which are affine in control and which cannot be stabilized by continuous state feedback. The approach is independent of the selection of a Lyapunov type function, but requires the solution of a nonlinear programming satisficing problem stated in terms of the logarithmic coordinates of flows. As opposed to other approaches, point-to-point steering is not required to achieve asymptotic stability. Instead, the flow of the controlled system is required to intersect periodically a certain reachable set in the space of the logarithmic coordinates.
dc.languageen
dc.rightsacceso restringido
dc.subjectNonlinear systems with driftcontrol
dc.subjectControl synthesis
dc.subjectStabilization
dc.subjectTime-varying state feedback
dc.subjectSystems on Lie groups
dc.titleA geometric approach to feedback stabilization of nonlinear systems with drift
dc.typeartículo


Este ítem pertenece a la siguiente institución