dc.creatorJara, Alejandro
dc.creatorGarcia Zattera, María José
dc.creatorKomárek, Arnost
dc.date.accessioned2024-06-26T14:29:20Z
dc.date.accessioned2024-07-17T22:10:29Z
dc.date.available2024-06-26T14:29:20Z
dc.date.available2024-07-17T22:10:29Z
dc.date.created2024-06-26T14:29:20Z
dc.date.issued2015
dc.identifierAlejandro Jara, María José García-Zattera, Arnost Komárek. Fully Nonparametric Regression Modelling of Misclassified Censored Time-to-Event Data. In: Riten Mitra and Peter Mueller,editors. Nonparametric Bayesian Inference in Biostatistics. Springer; 2015. p. 247-267.
dc.identifier10.1007/978-3-319-19518-6_12
dc.identifier978-3-319-19517-9
dc.identifierhttps://doi.org/10.1007/978-3-319-19518-6_12
dc.identifierhttps://repositorio.uc.cl/handle/11534/86862
dc.identifierWOS:000376610800013
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9510223
dc.description.abstractWe propose a fully nonparametric modelling approach for time-to-event regression data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times and the determination of the occurrence of the event is subject to misclassification. The covariate-dependent time-to-event distributions are modelled using a linear dependent Dirichlet process mixture model. A general misclassification model is discussed, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. An advantage of the proposed model is that the underlying time-to-event distributions and the misclassification parameters can be estimated without any external information about the latter parameters.
dc.languageen
dc.relationNonparametric Bayesian Inference in Biostatistics
dc.rightsacceso restringido
dc.subjectHazard Function
dc.subjectDirichlet Process
dc.subjectAccelerate Failure Time Model
dc.subjectGamma Process
dc.subjectDirichlet Process Mixture
dc.titleFully Nonparametric Regression Modelling of Misclassified Censored Time-to-Event Data
dc.typecapítulo de libro


Este ítem pertenece a la siguiente institución