dc.creatorGander, Lia
dc.creatorKrause, Rolf
dc.creatorWeiser, Martin
dc.creatorSahli Costabal, Francisco
dc.creatorPezzuto, Simone
dc.date.accessioned2024-05-30T16:23:24Z
dc.date.accessioned2024-07-17T21:39:09Z
dc.date.available2024-05-30T16:23:24Z
dc.date.available2024-07-17T21:39:09Z
dc.date.created2024-05-30T16:23:24Z
dc.date.issued2023
dc.identifier10.1007/978-3-031-35302-4_14
dc.identifierhttps://doi.org/10.1007/978-3-031-35302-4_14
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-85172722625&partnerID=MN8TOARS
dc.identifierhttps://repositorio.uc.cl/handle/11534/86071
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9509978
dc.description.abstractFibrotic tissue is one of the main risk factors for cardiac arrhythmias. It is therefore a key component in computational studies. In this work, we compare the monodomain equation to two eikonal models for cardiac electrophysiology in the presence of fibrosis. We show that discontinuities in the conductivity field, due to the presence of fibrosis, introduce a delay in the activation times. The monodomain equation and eikonal-diffusion model correctly capture these delays, contrarily to the classical eikonal equation. Importantly, a coarse space discretization of the monodomain equation amplifies these delays, even after accounting for numerical error in conduction velocity. The numerical discretization may also introduce artificial conduction blocks and hence increase propagation complexity. Therefore, some care is required when comparing eikonal models to the discretized monodomain equation.
dc.languageen
dc.publisherSpringer
dc.relationLecture Notes in Computer Science
dc.rightsacceso restringido
dc.subjectCardiac electrophysiology
dc.subjectFibrosis
dc.subjectMonodomain model
dc.subjectEikonal model
dc.subjectEikonal-diffusion model
dc.titleOn the Accuracy of Eikonal Approximations in Cardiac Electrophysiology in the Presence of Fibrosis
dc.typecomunicación de congreso


Este ítem pertenece a la siguiente institución