Machine learning en anestesia. Avances de hoy para la anestesia del mañana

dc.creatorNúñez, Agustín
dc.creatorTawfiq, Samer
dc.creatorPolit, Andrés
dc.date2024-04-10T01:46:45Z
dc.date2024-04-10T01:46:45Z
dc.date2023
dc.date.accessioned2024-07-17T21:15:16Z
dc.date.available2024-07-17T21:15:16Z
dc.identifier10.25237/revchilanestv52n6-04
dc.identifier07164076
dc.identifierhttps://hdl.handle.net/20.500.12728/10685
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9509823
dc.descriptionArtificial intelligence (AI) is concerned with developing systems that perform tasks that typically require human intelligence. Machine learning (ML) is an important branch of AI and has significant applications in medicine. These applications have allowed advancements in anesthesiology, where algorithms capable of recognizing patterns in arterial waveforms and predicting episodes of hypotension have been developed, reducing postoperative pain and monitoring anesthesia. All of these tools are capable of assisting physicians in event prevention and decision-making. However, it is important to note that, up to now, ML-based tools cannot replace the clinical judgment of an anesthesiologist due to potential biases inherent in initial programming. © 2023 Sociedad de Anestesiologia de Chile. All rights reserved.
dc.formatapplication/pdf
dc.languagees
dc.publisherSociedad de Anestesiologia de Chile
dc.subjectanesthesia
dc.subjectArtificial intelligence
dc.subjectintraoperative complications
dc.subjectintraoperative monitoring
dc.subjectmachine learning
dc.titleAnethesia and machine learning
dc.titleMachine learning en anestesia. Avances de hoy para la anestesia del mañana
dc.typeArticle


Este ítem pertenece a la siguiente institución