dc.creatorAlvarez, Jose M.
dc.creatorBrooks, Matthew D.
dc.creatorSwift, Joseph
dc.creatorCoruzzi, Gloria M.
dc.creatorAlhafez, Iyad Alabd [Univ Mayor, Fac Ciencias, Ctr Genom & Bioinformat, Chile]
dc.date.accessioned2023-11-28T20:57:54Z
dc.date.accessioned2024-05-02T20:49:59Z
dc.date.available2023-11-28T20:57:54Z
dc.date.available2024-05-02T20:49:59Z
dc.date.created2023-11-28T20:57:54Z
dc.date.issued2021-07-19
dc.identifierAlvarez, J. M., Brooks, M. D., Swift, J., & Coruzzi, G. M. (2021). Time-based systems biology approaches to capture and model dynamic gene regulatory networks. Annual review of plant biology, 72, 105-131.
dc.identifier1543-5008
dc.identifiereISSN: 1029-0435
dc.identifierWOS: 000669645400005
dc.identifierPMID: 33667112
dc.identifierhttps://repositorio.umayor.cl/xmlui/handle/sibum/9058
dc.identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312366/pdf/nihms-1823116.pdf
dc.identifierhttps://doi.org/10.1146%2Fannurev-arplant-081320-090914
dc.identifierhttps://www-annualreviews-org.bibliotecadigital.umayor.cl:2443/doi/pdf/10.1146/annurev-arplant-081320-090914
dc.identifier10.1016/j.commatsci.2021.110445
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9275844
dc.description.abstractAll aspects of transcription and its regulation involve dynamic events. However, capturing these dynamic events in gene regulatory networks (GRNs) offers both a promise and a challenge. The promise is that capturing and modeling the dynamic changes in GRNs will allow us to understand how organisms adapt to a changing environment. The ability to mount a rapid transcriptional response to environmental changes is especially important in nonmotile organisms such as plants. The challenge is to capture these dynamic, genome-wide events and model them in GRNs. In this review, we cover recent progress in capturing dynamic interactions of transcription factors with their targets-at both the local and genome-wide levels-and how they are used to learn how GRNs operate as a function of time. We also discuss recent advances that employ time-based machine learning approaches to forecast gene expression at future time points, a key goal of systems biology.
dc.languageen_US
dc.publisherANNUAL REVIEWS
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.titleTime-Based Systems Biology Approaches to Capture and Model Dynamic Gene Regulatory Networks
dc.typeArtículo o Paper


Este ítem pertenece a la siguiente institución