dc.creatorUrbina Fredes, Sebastián
dc.creatorDehghan Firoozabadi, Ali
dc.creatorAdasme, Pablo
dc.creatorZabala-Blanco, David
dc.creatorPalacios Játiva, Pablo
dc.creatorAzurdia-Meza, Cesar A.
dc.date2024-04-23T15:39:32Z
dc.date2024-04-23T15:39:32Z
dc.date2023
dc.date.accessioned2024-05-02T20:32:30Z
dc.date.available2024-05-02T20:32:30Z
dc.identifierhttp://repositorio.ucm.cl/handle/ucm/5344
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9275527
dc.descriptionIn recent years, some novel methods have been developed for the detection of diseases based on biomedical signals. In this article, a method for the automated detection of epilepsy seizures is presented by analyzing electroencephalogram (EEG) signals based on the wavelet transform. In the first step, the EEG signals are pre-processed with the Savitzky-Golay filters (SGF) for noise elimination. The filtered signals are decomposed with Discrete Wavelet Transform (DWT) to construct spontaneous alpha and beta brain rhythms. The mean, standard deviation, skewness, kurtosis, energy and entropy characteristics are extracted from healthy and seizure intervals. By using support vector machine (SVM), the signals are classified in the categories of normal and epileptic, reaching precision levels of 92.82% in the alpha rhythm in comparison with other previous works.
dc.languageen
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.source9th International Conference on Signal Processing and Communication (ICSC), NOIDA, India, 325-330
dc.subjectSupport vector machines
dc.subjectEpilepsy
dc.subjectWavelet analysis
dc.subjectElectroencephalography
dc.subjectVectors
dc.subjectDiscrete wavelet transforms
dc.subjectTask analysis
dc.titleDetection of epileptic seizures by analysis of electroencephalogram based on Wavelet transform
dc.typeArticle


Este ítem pertenece a la siguiente institución