dc.creatorCabrera-Ariza, Antonio
dc.creatorPeralta-Aguilera, Miguel
dc.creatorHenríquez-Hernández, Paula V.
dc.creatorSantelices-Moya, Rómulo
dc.date2024-01-11T14:44:34Z
dc.date2024-01-11T14:44:34Z
dc.date2023
dc.date.accessioned2024-05-02T20:32:01Z
dc.date.available2024-05-02T20:32:01Z
dc.identifierhttp://repositorio.ucm.cl/handle/ucm/5169
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9275354
dc.descriptionThis study explores the use of unmanned aerial vehicles (UAVs) and machine learning algorithms for the identification of Nothofagus alessandrii (ruil) species in the Mediterranean forests of Chile. The endangered nature of this species, coupled with habitat loss and environmental stressors, necessitates efficient monitoring and conservation efforts. UAVs equipped with high-resolution sensors capture orthophotos, enabling the development of classification models using supervised machine learning techniques. Three classification algorithms—Random Forest (RF), Support Vector Machine (SVM), and Maximum Likelihood (ML)—are evaluated, both at the Pixel- and Object-Based levels, across three study areas. The results reveal that RF consistently demonstrates strong classification performance, followed by SVM and ML. The choice of algorithm and training approach significantly impacts the outcomes, highlighting the importance of tailored selection based on project requirements. These findings contribute to enhancing species identification accuracy in remote sensing applications, supporting biodiversity conservation and ecological research efforts.
dc.languageen
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourceDrones, 7(11), 668
dc.subjectSpecies identification
dc.subjectRemote sensing
dc.subjectClassification algorithms
dc.titleUsing uavs and machine learning for Nothofagus alessandrii species identification in mediterranean forests
dc.typeArticle


Este ítem pertenece a la siguiente institución