dc.creatorHernández-García, Ruber
dc.creatorSalazar-Jurado, Edwin
dc.creatorBarrientos, Ricardo
dc.creatorCastro, Francisco Manuel
dc.creatorRamos-Cózar, Julián
dc.creatorGuil, Nicolás
dc.date2023-09-11T17:33:39Z
dc.date2023-09-11T17:33:39Z
dc.date2023
dc.date.accessioned2024-05-02T20:31:39Z
dc.date.available2024-05-02T20:31:39Z
dc.identifierhttp://repositorio.ucm.cl/handle/ucm/4966
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9275186
dc.descriptionPalm vein recognition has relevant advantages in comparison with most traditional biometrics, such as high security and recognition performance. In recent years, CNN-based models for vascular biometrics have improved the state-of-the-art, but they have the disadvantage of requiring a larger number of samples for training. In this context, the generation of synthetic databases is very effective for evaluating the performance of biometric systems. The present study proposes a new perspective of a transfer learning approach for palm vein recognition, evaluating the use of Synthetic-sPVDB and NS-PVDB synthetic databases for pre-training deep learning models and validating their performance on real databases. The proposed methodology comprises two different branches as inputs. Firstly, a synthetic database is used to train a CNN model, and in the second branch, a real database is used to finetune and evaluate the performance of the resulting pre-trained model. For the feature learning process, we implemented two end-to-end CNN architectures based on AlexNet and Resnet32. The experimental results on the most representative public datasets have shown the usefulness of using palm vein synthetic images for transfer learning, outperforming the state-of-the-art results.
dc.languageen
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourceIEEE 13th International Conference on Pattern Recognition Systems (ICPRS), 2023, 1-7
dc.subjectTraining
dc.subjectRepresentation learning
dc.subjectDatabases
dc.subjectBiometrics (access control)
dc.subjectScalability
dc.subjectBiological system modeling
dc.subjectTransfer learning
dc.titleFrom synthetic data to real palm vein identification: a fine-tuning approach
dc.typeArticle


Este ítem pertenece a la siguiente institución