dc.creatorUlloa Orellana, Mario
dc.creatorLópez-Cortès, Xaviera A.
dc.creatorZabala-Blanco, David
dc.creatorPalacios Játiva, Pablo
dc.creatorDatta, Jayanta
dc.date2023-06-05T20:30:08Z
dc.date2023-06-05T20:30:08Z
dc.date2022
dc.date.accessioned2024-05-02T20:31:20Z
dc.date.available2024-05-02T20:31:20Z
dc.identifierhttp://repositorio.ucm.cl/handle/ucm/4834
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9275069
dc.descriptionIn this work, we introduce the use of a weighted extreme learning machine (ELM) to give an automated predictive value to mass spectrometry data. In specific, the data obtained with Matrix-Assisted Laser DesorptioMonization-Time of Flight (MALDI-TOF) technique are explored for balanced and unbalanced dataset scenarios, and compared with benchmarking machine learning algorithms (Naive Bayes, Support Vector Machine, Random Forest, and Logistic Regression). Finally, the evaluation of the performance of the proposed weighted ELM was realized in order to determine the most efficient technique in terms of predicting diseases. In the training phase, the weighted ELM reaches the 100% of accuracy, sensitivity and specificity, which are 25% and 30% higher than the rest of benchmarking machine learning algorithms. Meanwhile, in the testing phase results, the ELM observations highlight the scarce bias to predict positive and negative classes in unbalanced datasets.
dc.languageen
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.source2022 IEEE Colombian Conference on Communications and Computing (COLCOM), 1-6
dc.subjectTraining
dc.subjectSupport vector machines
dc.subjectMachine learning algorithms
dc.subjectExtreme learning machines
dc.subjectSensitivity and specificity
dc.subjectBenchmark testing
dc.subjectMass spectroscopy
dc.titleExtreme learning machine for mass spectrometry data analysis
dc.typeArticle


Este ítem pertenece a la siguiente institución