dc.creatorZabala-Blanco, David
dc.creatorAzurdia-Meza, Cesar A.
dc.creatorMontejo-Sánchez, Samuel
dc.creatorDehghan Firoozabadi, Ali
dc.date2023-05-16T15:02:11Z
dc.date2023-05-16T15:02:11Z
dc.date2020
dc.date.accessioned2024-05-02T20:31:16Z
dc.date.available2024-05-02T20:31:16Z
dc.identifierhttp://repositorio.ucm.cl/handle/ucm/4795
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9275035
dc.descriptionIt is well known that the performance of orthogonal frequency division multiplexing (OFDM) is limited by phase noise, which depends on the laser linewidths for coherent-detection radio over fiber (RoF) systems. In this manuscript, we present numerical and theoretical results to analyze the combined effects of phase and additive white Gaussian noises in the performance of RoF-OFDM schemes with the feasible pilot-based channel corrector. This phase-noise compensator is adopted due to its effectiveness as well as simplicity. It is shown that as the subcarrier modulation format increases, the required radio frequency linewidth for overcoming the FEC limit decreases by a factor of 10 times. Also, there is a signal–noise ratio penalty of 7 dB. Furthermore, it is demonstrated that the bit error rate enhances as the product of the laser linewidths and OFDM symbol period decreases because the pilot-assisted equalization method acts as a high-pass filter for phase noise. We finally discovered that the intermediate-frequency (IF) carrier suppression is not mandatory; the system performance is not affected by selecting properly the carrier–signal ratio and IF. To confirm the previous observation, a novel way to measure phase noise in RoF-OFDM signals accompanied by the IF carrier is proposed. The mean integral phase noise comes from the adaptation of the root mean square phase deviation of the single-carrier systems. This work serves as a guideline for the study and design of OFDM-based RoF schemes susceptible to direct and coherent detections.
dc.languageen
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourceOptical Review, 27(2), 156-169
dc.subjectAdditive white Gaussian noise
dc.subjectLaser phase noise
dc.subjectOrthogonal frequency division multiplexing
dc.subjectIntermediate frequency suppression
dc.subjectRadio over fiber systems
dc.titleOFDM tolerance to additive white Gaussian and laser phase noises in optical heterodyning systems accompanied by the feasible pilot-assisted equalization
dc.typeArticle


Este ítem pertenece a la siguiente institución