dc.creatorSulla-Torres, José
dc.creatorIncalla Nina, Christian
dc.creatorRivera-Portugal, Margot
dc.creatorCossio-Bolaños, Marco Antonio
dc.creatorGómez-Campos, Rossana
dc.date2023-03-29T12:25:03Z
dc.date2023-03-29T12:25:03Z
dc.date2019
dc.date.accessioned2024-05-02T20:30:48Z
dc.date.available2024-05-02T20:30:48Z
dc.identifierhttp://repositorio.ucm.cl/handle/ucm/4578
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9274820
dc.descriptionLow bone mineral density can lead to weak and fragile bones that lead to problems of osteoporosis and fractures in people, early detection can help their treatment. This research compares five data mining algorithms to predict bone weakness in students between 5 and 18 years of age. The methodology used for data processing is CRISP-DM. The accuracy of the algorithms applied in the referenced works with the results obtained with the WEKA data mining tool is discussed. After making the comparison, it was determined that the JRip algorithm was more precise.
dc.languageen
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourceInternational Conference on Inclusive Technologies and Education (CONTIE), San Jose del Cabo, Mexico, 56-566
dc.subjectBone mineral density
dc.subjectAnthropometry
dc.subjectData mining
dc.subjectRules-Jrip
dc.subjectTree-J48
dc.subjectRamdom-tree
dc.titleComparison of classification algorithms for the detection of bone weakness in students using anthropometric data
dc.typeArticle


Este ítem pertenece a la siguiente institución