dc.creatorTobar Valenzuela, Luis
dc.creatorMora, Marco
dc.creatorSilva Pavez, Fabián
dc.creatorTorres-Gonzalez, Italo
dc.creatorBarría-Valdebenito, Pedro
dc.date2023-03-08T13:27:27Z
dc.date2023-03-08T13:27:27Z
dc.date2022
dc.date.accessioned2024-05-02T20:30:38Z
dc.date.available2024-05-02T20:30:38Z
dc.identifierhttp://repositorio.ucm.cl/handle/ucm/4492
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9274736
dc.descriptionExtreme Learning Machine (ELM) is a neural network training paradigm that is characterized by simplicity, speed and high level of accuracy. The tuning of the network parameters is normally carried out with non-linear optimization algorithms that break this principle of simplicity and reduced execution time. This article shows that ELM network tuning can be performed efficiently by simple optimization algorithms, consistent with its basic philosophy. Experiments with 8 optimization algorithms are shown, considering 6 widely used databases in training algorithm benchmarks. The numerical results show that the Golden Section Algorithm dramatically reduces the network hyperparameter search time compared to the search while maintaining a high level of accuracy.
dc.languageen
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourceInternational Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Curicó, Chile, 1-5
dc.subjectTraining
dc.subjectPhilosophical considerations
dc.subjectExtreme learning machines
dc.subjectDatabases
dc.subjectNeural networks
dc.subjectBenchmark testing
dc.subjectOptimization
dc.titleFast tuning of extreme learning machine neural networks based with simple optimization algorithms
dc.typeArticle


Este ítem pertenece a la siguiente institución