dc.creatorIbacache-Pulgar, Germán
dc.creatorFigueroa-Zúñiga, Jorge I.
dc.creatorMarchant-Fuentes, Carolina
dc.date2022-01-07T12:27:04Z
dc.date2022-01-07T12:27:04Z
dc.date2021
dc.date.accessioned2024-05-02T20:28:44Z
dc.date.available2024-05-02T20:28:44Z
dc.identifierhttp://repositorio.ucm.cl/handle/ucm/3703
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9273990
dc.descriptionIn this paper, we study a semiparametric additive beta regression model using a parameterization based on the mean and a dispersion parameter. This model is useful for situations where the response variable is continuous and restricted to the unit interval, in addition to being related to other variables through a semiparametric regression structure. First, we formulate the model and then estimation of its parameters is discussed. A back-fitting algorithm is derived to attain the maximum penalized likelihood estimates by using natural cubic smoothing splines. We provide closed-form expressions for the score function, Fisher information matrix and its inverse. Local influence methods are derived as diagnostic tools. Finally, a practical illustration based real data is presented and discussed.
dc.languageen
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourceREVSTAT-Statistical Journal, 19(2), 255-274
dc.subjectBeta distribution
dc.subjectDiagnostic techniques
dc.subjectMaximum penalized likelihood estimates
dc.subjectPenalized likelihood function
dc.subjectSemiparametric additive models
dc.titleSemiparametric additive beta regression models: Inference and local influence diagnostics
dc.typeArticle


Este ítem pertenece a la siguiente institución