dc.creatorLoschi, R. H.
dc.creatorIglesias, P. L.
dc.creatorArellano Valle, R. B.
dc.creatorCruz, F. R. B.
dc.date.accessioned2024-01-10T13:48:38Z
dc.date.accessioned2024-05-02T20:15:16Z
dc.date.available2024-01-10T13:48:38Z
dc.date.available2024-05-02T20:15:16Z
dc.date.created2024-01-10T13:48:38Z
dc.date.issued2007
dc.identifier10.1016/j.ejor.2006.04.016
dc.identifier0377-2217
dc.identifierhttps://doi.org/10.1016/j.ejor.2006.04.016
dc.identifierhttps://repositorio.uc.cl/handle/11534/79384
dc.identifierWOS:000244380500018
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9273748
dc.description.abstractIn change point problems in general we should answer three questions: how many changes are there? Where are they? And, what is the distribution of the data within the blocks? In this paper, we develop a new full predictivistic approach for modeling observations within the same block of observation and consider the product partition model (PPM) for treating the change point problem. The PPM brings more flexibility into the change point problem because it considers the number of changes and the instants when the changes occurred as random variables. A full predictivistic characterization of the model can provide a more tractable way to elicit the prior distribution of the parameters of interest, once prior opinions will be required only about observable quantities. We also present an application to the problem of identifying multiple change points in the mean and variance of a stock market return time series. (c) 2006 Elsevier B.V. All rights reserved.
dc.languageen
dc.publisherELSEVIER SCIENCE BV
dc.rightsacceso restringido
dc.subjectuncertainty modeling
dc.subjectnormal-inverse-gamma distribution
dc.subjectproduct partition model
dc.subjectstudent-t distribution
dc.subjectPRODUCT PARTITION MODELS
dc.titleFull predictivistic modeling of stock market data: Application to change point problems
dc.typeartículo


Este ítem pertenece a la siguiente institución