dc.creatorIsabel Cortez, Maria
dc.creatorRivera Letelier, Juan
dc.date.accessioned2024-01-10T12:38:01Z
dc.date.accessioned2024-05-02T20:10:38Z
dc.date.available2024-01-10T12:38:01Z
dc.date.available2024-05-02T20:10:38Z
dc.date.created2024-01-10T12:38:01Z
dc.date.issued2010
dc.identifier10.1016/j.anihpc.2009.07.008
dc.identifier1873-1430
dc.identifier0294-1449
dc.identifierhttps://doi.org/10.1016/j.anihpc.2009.07.008
dc.identifierhttps://repositorio.uc.cl/handle/11534/76968
dc.identifierWOS:000274146700006
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9273591
dc.description.abstractA well-known consequence of the ergodic decomposition theorem is that the space of invariant probability Measures of a topological dynamical system, endowed with the weak* topology, is a non-empty metrizable Choquet simplex. We show that every non-empty metrizable Choquet simplex arises as the space of invariant probability measures oil the post-critical set of a logistic map. Here. the post-critical set of a logistic map is the omega-limit set of its unique critical point. In fact we show the logistic map f can be taken in such a way that its post-critical set is a Cantor set where f is minimal, and Such that each invariant probability measure oil this set has zero Lyapunov exponent, and is,in equilibrium state for the potential - In vertical bar f'vertical bar. (C) 2009 Elsevier Masson SAS. All rights reserved.
dc.languageen
dc.publisherELSEVIER SCIENCE BV
dc.rightsacceso restringido
dc.subjectLogistic map
dc.subjectPost-critical set
dc.subjectInvariant measures
dc.subjectChoquet simplices
dc.subjectMinimal Cantor system
dc.subjectGeneralized odometer
dc.subjectADDING MACHINES
dc.subjectTOEPLITZ FLOWS
dc.subjectUNIMODAL MAPS
dc.subjectRATIONAL MAPS
dc.subjectSYSTEMS
dc.subjectREALIZATION
dc.subjectNUMERATION
dc.subjectODOMETERS
dc.subjectDIMENSION
dc.subjectDYNAMICS
dc.titleChoquet simplices as spaces of invariant probability measures on post-critical sets
dc.typeartículo


Este ítem pertenece a la siguiente institución