artículo
Modeling portland blast-furnace slag cement high-performance concrete
Fecha
2004Registro en:
10.14359/13422
1944-737X
0889-325X
WOS:000224068200005
Autor
Videla, C
Gaedicke, C
Institución
Resumen
This research focused on portland blast-furnace slag cement high-performance concrete (HPC), with specified 28-day compressive strengths between 60 to 110 MPa. Compressive and flexural strength, elastic modulus, abrasion resistance, and shrinkage properties were studied. Laboratory test results showed that it is possible to develop a general compressive strength model combining a hyperbolic equation for strength evolution and an exponential equation for mixture design parameters. It was also concluded that the measured moduli of elasticity are lower than the ACI predicted values, and that the square root of the compressive strength was not a good predictor of the flexural strength for the materials used. Furthermore, in this paper it was concluded that the ASTM C 944-99 abrasion test is not a very effective way to measure abrasion resistance of HPC. Autogenous shrinkage showed to be a significant part of total shrinkage. An updated FIB 2000 model to local conditions was successfully developed to predict shrinkage of HPC.