dc.creatorGutierrez, S
dc.date.accessioned2024-01-10T12:07:57Z
dc.date.accessioned2024-05-02T19:37:10Z
dc.date.available2024-01-10T12:07:57Z
dc.date.available2024-05-02T19:37:10Z
dc.date.created2024-01-10T12:07:57Z
dc.date.issued2004
dc.identifier10.1016/j.ijsolstr.2003.10.016
dc.identifier1879-2146
dc.identifier0020-7683
dc.identifierhttps://doi.org/10.1016/j.ijsolstr.2003.10.016
dc.identifierhttps://repositorio.uc.cl/handle/11534/76342
dc.identifierWOS:000188814600004
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9272742
dc.description.abstractIn two dimensions there are optimal bounds for the effective conductivity of arbitrary mixtures of two heat conducting materials: one isotropic and the other anisotropic; used in fixed volume fractions and allowing for rotations. Some of those bounds involve a rank-two lamination, but others involve a microstructure of coated disks. We create a region of laminates of rank at most three, which gives a very good approximation of the optimal bound if the starting material has a moderate degree of anisotropy. We also study the stability under homogenization of this region, meaning that whenever one homogenizes a mixture of two materials belonging to it, the effective diffusion tensor also belongs to this region. This is done to show that the region we create cannot be easily enlarged. (C) 2003 Elsevier Ltd. All rights reserved.
dc.languageen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.rightsacceso restringido
dc.subjectcomposites
dc.subjecthomogenization
dc.subjectlaminates
dc.subjectQUASI-CONFORMAL MAPPINGS
dc.subjectG-CLOSURE PROBLEMS
dc.titleRank-three laminates are good approximants of the optimal microstructures for the diffusion problem in dimension two
dc.typeartículo


Este ítem pertenece a la siguiente institución