dc.creatorCarocca, Angel
dc.creatorGonzalez Aguilera, Victor
dc.creatorRodriguez, Rubi E.
dc.date.accessioned2024-01-10T12:10:58Z
dc.date.available2024-01-10T12:10:58Z
dc.date.created2024-01-10T12:10:58Z
dc.date.issued2006
dc.identifier10.1515/JGT.2006.018
dc.identifier1435-4446
dc.identifier1433-5883
dc.identifierhttps://doi.org/10.1515/JGT.2006.018
dc.identifierhttps://repositorio.uc.cl/handle/11534/76620
dc.identifierWOS:000237967800010
dc.description.abstractLet G be a finite group. For each integral representation rho of G we consider rho-decomposable principally polarized abelian varieties; that is, principally polarized abelian varieties (X, H) with rho(G)-action, of dimension equal to the degree of rho, which admit a decomposition of the lattice for X into two G-invariant sublattices isotropic with respect to LH, with one of the sublattices ZG-isomor-phic to rho.
dc.description.abstractWe give a construction for rho-decomposable principally polarized abelian varieties, and show that each of them is isomorphic to a product of elliptic curves.
dc.description.abstractConversely, if rho is absolutely irreducible, we show that each rho-decomposable p.p.a.v. is (isomorphic to) one of those constructed above, thereby characterizing them.
dc.description.abstractIn the case of irreducible, reduced root systems, we consider the natural representation of its associated Weyl group, apply the preceding general construction, and characterize completely the associated families of principally polarized abelian varieties, which correspond to modular curves.
dc.languageen
dc.publisherWALTER DE GRUYTER GMBH
dc.rightsregistro bibliográfico
dc.subjectELLIPTIC-CURVES
dc.subjectFAMILIES
dc.titleWeyl groups and abelian varieties
dc.typeartículo


Este ítem pertenece a la siguiente institución